
LA-UR-17-24975
Approved for public release; distribution is unlimited.

Title: A Simple Introduction to Moving Least Squares and Local Regression
Estimation

Author(s): Garimella, Rao Veerabhadra

Intended for: Report

Issued: 2017-06-22 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

A Simple Introduction to Moving Least Squares and
Local Regression Estimation

Rao V. Garimella (rao@lanl.gov)
T-5, Los Alamos National Laboratory

Jun 20, 2017

LA-UR-17-24975

Abstract

In this brief note, a highly simplified introduction to esimating functions over a set
of particles is presented. The note starts from Global Least Squares fitting, going on
to Moving Least Squares estimation (MLS) and finally, Local Regression Estimation
(LRE).

1 Introduction

Here we consider the problem of estimating a general function over a domain given a
set of pointwise values over that domain. Such an estimation is useful for numerical
solution of PDEs over a domain, surface reconstruction from scanned data or under-
standing the structure of collected data. We will describe a series of techniques that
lead up to a powerful method called Local Regression Estimator that has many desir-
able properties.

2 Global Least Squares Estimation

Consider the problem of fitting a function to a data set in 1D. The points are given
by xi, i = 1, N and the function values at these points by u(xi) = ui, i = 1, N . If
we assume that the data can be approximately represented by a global polynomial
function then we can write:

uh(x) =

m∑
j

bj(x)cj

= bT (x)c

(1)

1

where, uh is the approximation to the true function u(x), b(x) is a basis vector con-

taining monomials up to degree m defined as
[
1 x x2 . . . xm

]T
, c is a vector of

constant coefficients defined as
[
c0 c1 c2 . . . cm

]T
.

To solve for the unknown coefficients of the polynomial fit, we construct the follow-
ing objective function:

RGLS =

N∑
i

(
uh(xi)− ui

)2

=
N∑
i

 m∑
j

bj(xi)cj − ui

2 (2)

and minimize it with respect to the coefficents c. Setting ∂RGLS/∂ck = 0, k = 1,m to
obtain the extrema, we get:

N∑
i

2

bk(xi)

 m∑
j

bj(xi)cj − ui

 = 0, or,

N∑
i

bk(xi)
m∑
j

bj(xi)cj

 =
N∑
i

bk(xi)ui

(3)

We can then write the m normal equations as:

[
b1(x1) b1(x2) . . . b1(xN)

]

b1(x1) b2(x1) . . . bm(x1)
b1(x2) b2(x2) . . . bm(x2)

.

.

.
b1(xN) b2(xN) . . . bm(xN)

c1
c2
.
.
.

cm

 =
[
b1(x1) b1(x2) . . . b1(xN)

]

u1
u2
.
.
.

uN

[
b2(x1) b2(x2) . . . b2(xN)

]

b1(x1) b2(x1) . . . bm(x1)
b1(x2) b2(x2) . . . bm(x2)

.

.

.
b1(xN) b2(xN) . . . bm(xN)

c1
c2
.
.
.

cm

 =
[
b2(x1) b2(x2) . . . b2(xN)

]

u1
u2
.
.
.

uN

.

.

.

[
bm(x1) bm(x2) . . . bm(xN)

]

b1(x1) b2(x1) . . . bm(x1)
b1(x2) b2(x2) . . . bm(x2)

.

.

.
b1(xN) b2(xN) . . . bm(xN)

c1
c2
.
.
.

cm

 =
[
bm(x1) bm(x2) . . . bm(xN)

]

u1
u2
.
.
.

uN

(4)

in matrix form as:

BTBc = BTu (5)

where B is an m×N matrix defined as:

2

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

1.0

2.5

4.0

5.0 5.0

3.0

2.0

1.5

Figure 1: Global Least Squares (solid curve) and Weighted Global Least Squares (dashed
curve) fit for data represented by the solid circles. The fit is a quadratic fit. The weighting
used for the dashed curve is 1.0 every where except at x = 3.0 and x = 4.0 where it is 10.0

B =

b1(x1) b2(x1) . . . bm(x1)
b1(x2) b2(x2) . . . bm(x2)

.

.

.
b1(xN) b2(xN) . . . bm(xN)

 (6)

This matrix equation can be solved directly for the coefficient vector c as:

c = (BTB)−1BTu (7)

or in case of large systems using an iterative method.
Having obtained the coefficients c, we can then compute the value of the function

at any point x in the domain using the equation for uh. This analysis is substantially
unchanged in higher dimensions. An example of a global least squares fit is shown in
Figure 1

3 Weighted Global Least Squares fit

We can assign each data value a weight w to use in the least squares fit, so that we
write the objective function to be minimized as:

3

RWGLS =

N∑
i

wi

(
uh(xi)− ui

)2

=
N∑
i

wi

 m∑
j

bj(xi)cj − ui

2 (8)

Setting ∂RWGLS/∂ck = 0, k = 1,m, we get the normal equations as:

2
N∑
i

bk(xi)wi

 m∑
j

bj(xi)cj − ui

 = 0, or,

N∑
i

bk(xi)wi

m∑
j

bj(xi)cj

 =

N∑
i

bk(xi)wiui

BTWBc = BTWu

(9)

where W is the weight matrix defined as:

W1 0 . . . 0
0 W2 . . . 0

.

.

.
0 0 . . . WN

 (10)

The solution of the normal equations is then given as:

c = (BTWB)−1BWu (11)

The matrix BTWB, is called a moment matrix. An example of the weighted global
least squares fit is shown in Figure 1.

4 Weighted Local Least Squares

In global least squares fitting, we assumed that the function represented by the data
can be accurately captured by a single polynomial spanning the entire domain. For
large, complex data sets, however, this would require us to fit a polynomial of an
impractically high order and even then it may not capture all the features of the data.
So instead of a global solution, we can attempt to gain a better picture of the solution
by fitting lower order polynomials to each data point (xp, up) and its “neighbors.”
Thus there are N least squares fits uhp , each one approximating the solution at point xp
and the coefficient vector c is different at each point. Note that unlike other methods
discussed here this is not a well-established method and is not in common use; instead,

4

the method is being presented merely as a stepping stone on our way to understanding
Moving Least Squares in the next section.

We now write the approximate solution at point xp formally as:

uhp(x) =

m∑
j

bj(x)cpj

= bT (x)cp

(12)

where uhp is shorthand for uh|xp and cpj for cj |xp . Since this is a low order polynomial,
we do not expect to use this approximation at points “far away” from xp. We then
write the local objective function at point xp as:

RWLLS
p =

N∑
i

wpi

(
uhp(xi)− ui

)2

=
N∑
i

wpi

 m∑
j

bj(xi)cpj − ui

2 (13)

to be minimized with respect to c. As with variables uhp and cpj , we use RWLLS
p as

shorthand for RWLLS |xp and wpi for wi|xp . Note that in addition to the coefficients,
the weighting of the data is different for the local objective function at each point xp.
This is because we typically will choose a low order polynomial (linear, quadratic, etc.)
to fit locally and we would not want data from points far from the current point to
exert an influence on the local solution. Thus the weights are non-zero for data points
in the local neighborhood and are zero for points outside.

Then the the normal equations at point xi become:

N∑
i

bk(xi)wpi

m∑
j

cpjbj(xi)

 =
N∑
i

bk(xi)wpiui

BTWpBcp = BTWpu

(14)

which is solved in the usual way.
Unlike the Weighted Global Least Squares fit, there isn’t necessarily only one ap-

proximate solution at any point x in the domain since the neighborhoods of the local
solutions overlap. Then the first choice we have for evaluating uh(x) is to use the local
solution uhp at the point xp closest to point x. The other method could be to use a
partition of unity that pulls in all approximate solutions that may be active over x like
so:

uh(x) =
1

n

n∑
i

uhi (15)

5

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

1.0

2.5

4.0

5.0 5.0

3.0

2.0

1.5

Figure 2: Weighted Local Least Squares fit for given data. Note the overlapping approxima-
tions at most points

where n is the number of solutions that are non-zero at x. An example of what
quadratic functions fitted to each point and its neighbors might look like is shown in
Figure 2.

5 Moving Least Squares

In the Moving Least Squares method (MLS), we build upon the notion of the Weighted
Local Least Squares and extend it to build a local solution at any point x̃ in the
domain rather than at the discrete points for which we have data. Thus we write the
approximate solution as:

uh(x)|x̃ =
m∑
j

bj(x)cj(x̃)

= bT (x)c(x̃)

(16)

and write the local objective function at point x̃ as:

6

RMLS |x̃ =
N∑
i

wi(xi − x̃)
(
uh(xi)− ui

)2

=

N∑
i

wi(xi − x̃)

 m∑
j

bj(xi)cj(x̃)− ui

2 (17)

to be minimized with respect to c(x̃). Also, in the MLS formulation, note that the
weights are actually continuous functions of the distance from the point x̃. Typically,
the weight function is designed to be maximum at 0 and drop off to zero at some
distance (typically ±2). The neighborhood over which is the weight function is non-
zero is called the compact support or just the support.

The normal equations at point x̃ become:

N∑
i

bk(xi)wi(xi − x̃)
m∑
j

cj(x̃)bj(xi)

 =
N∑
i

bk(xi)wi(xi − x̃)ui

BTW(x̃)Bc(x̃) = BTW(x̃)u

(18)

which are solved in the usual way. An illustration of the Moving Least Squares fit
is shown for our example where a quadratic function is fitted to the data around the
point x = 2.5. The weight function filters out the far field points and uses data only
from x = 1.0, x = 2.0, x = 3.0 and x = 4.0.

It is possible to reformulate the above equations using a local coordinate relative
to the point x̃ around which the local least squares fit is being computed. Then the
approximate solution is written as:

uh(x)|x̃ =
m∑
j

cj(x̃)bj(x− x̃)

= cT (x̃)b(x− x̃)

(19)

The basis vector b(x − x̃) is called the shifted basis [1] or centered basis [2] and
is denoted by p(x̃, x). When x coincides with a particular data point xi we use the
shorthand notation pi(x) to denote p(x, xi). This reformulation with respect to a local
coordinate system is said to typically lead to moment matrices that are better condi-
tioned in the normal equations. However, instead of just presenting a modified residual
with the shifted basis we present a more general technique involving the estimation of
the function and its derivatives using a shifted basis in the following section.

6 Local Regression Estimation

Dilts [3] approached the problem of estimating a function (and its derivatives) using
a method called Local Regression Estimation drawing upon concepts developed in
statistics long ago. We attempt to present an outline of this powerful method here.

7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

1.0

2.5

4.0

5.0 5.0

3.0

2.0

1.5

x

Figure 3: Illustration of a quadratic fit at an arbitrary point (x = 2.5) in the domain using
Moving Least Squares.

8

The Taylor series expansion of an approximate solution uh about point x̃ at a nearby
point xi is given by:

uh(xi) = uh(x̃) +
∂uh

∂x
(xi − x̃) +

∂2uh

∂x2
(xi − x̃)2

2!
+
∂3uh

∂x3
(xi − x̃)3

3!
+ . . .

= β(x̃)Tb(x− x̃)

= β(x̃)Tp(x̃, x)

(20)

where β(x̃) =
[
uh(x̃) ∂uh

∂x
∂2uh

∂x2
∂3uh

∂x3 . . .
]
.

Using this expansion, we can rewrite the usual least squares residual as:

RLRE |x̃ =

N∑
i

wi(xi − x̃)
(
uh(xi)− ui

)2
=

N∑
i

wi(xi − x̃) (β(x̃)pi(x̃)− ui)2
(21)

To find the extrema of this residual, we set its partial derivative with respect to each
component βk to zero to get:

N∑
i

2wi(xi − x̃)pik(x̃) (β(x̃)pi(x̃)− ui) = 0

N∑
i

β(x̃)pik(x̃)wi(xi − x̃)pi(x̃) =
N∑
i

wi(xi − x̃)pik(x̃)ui

(22)

Combining m such equations, we can write:

PT (x̃)W(x̃)P(x̃)β(x̃) = PT (x̃)W(x̃)u (23)

Then we can solve for β(x̃) as:

β(x̃) = ψT (x̃)u (24)

where ψ(x̃) =
(
PT (x̃)W(x̃)P(x̃)

)−1
PT (x̃)W(x̃).

Furthermore, Dilts introduces an m×m matrix called the Taylor Series Jet Matrix
whose columns consist of the first m derivatives of b(x), i.e.,

Jb(x) =
[
b(x) b′(x) b′′(x) b′′′(x)

]
(25)

and shows that for all bases composed of monomials of up to degree 3 in dimensions
up to 4, the following holds:

9

J−1b (x) = Jb(−x) (26)

leading to the equation:

p(x̃, x) = b(x− x̃) = J−1b (x̃)b(x) (27)

where x is another point in the domain.

Given the definition of β(x), we can conclude that:

β(x) =
[
uh(x) ∂uh

∂x
∂2uh

∂x2
∂3uh

∂x3 . . .
]

=
[
cT (x)b(x) cT (x)b′(x) cT (x)b′′(x) cT (x)b′′′(x) . . .

]
=
[
cT (x)

[
b(x) b′(x) b′′(x) b′′′(x) . . .

]]
= cT (x)Jb(x)

(28)

Therefore, knowing β(x̃), we can compute c(x̃) as:

c(x̃) = (JT
b (x̃))−1βT (x̃) (29)

We can also derive the Local Regression Residual from the Moving Least Squares
Residual (adapted from Dilts[3]) as shown below:

RMLS |x̃ =
N∑
i

wi(xi − x̃)
(
uh(xi)|x̃ − ui

)2
=

N∑
i

wi(xi − x̃)
(
cT (x̃)b(xi)− ui

)2
=

N∑
i

wi(xi − x̃)
(
cT (x̃)Jb(x̃)J−1b (x̃)b(xi)− ui

)2
=

N∑
i

wi(xi − x̃) (β(x̃)p(x̃, xi)− ui)2

=
N∑
i

wi(xi − x̃) (β(x̃)pi(x̃)− ui)2

= RLRE

(30)

The distinguishing feature of Local Regression Estimation compared to Moving
Least Squares is that by embedding the derivatives of approximation directly into the
residual, Local Regression Estimation fits both the function and its derivatives to the
data. This leads to smoother derivatives than other methods where only the function is
fit to the data and the derivatives have to be computed by explicitly differentiating the

10

approximate function. Not only that, Local Regression Estimation readily computes
the derivatives of the approximating function as a result of the estimation process as:

uh(x̃) = β(x̃)e0 = cT (x̃)Jb(x̃)e0

∂uh(x̃)

∂x̃
= β(x̃)e1 = cT (x̃)Jb(x̃)e1

∂2uh(x̃)

∂x̃2
= β(x̃)e2 = cT (x̃)Jb(x̃)e2

.

.

.

(31)

where ei is the ith Cartesian basis vector.

7 Acknowledgements

This work was performed under the auspices of the National Nuclear Security Admin-
istration of the US Department of Energy at Los Alamos National Laboratory under
Contract No. DE-AC52-06NA25396 and supported by the DOE Advanced Simulation
and Computing (ASC) program.

The author wishes to acknowledge Gary Dilts for the many discussions on Local
Regression Estimation and his help in revising this document.

References

[1] Belytschko, T., Kronzaug, Y., Fleming, M., Organ, D. and Liu, W.K., “Smoothing
and Accelerated Computations in the Element Free Galerkin Method.” Journal of
Computational and Applied Mathematics, 74:111-126, 1996.

[2] Breitkopf, P., Rassineux, A. and Villon, P. “An introduction to Moving Least
Squares Meshfree Methods,” Revue Euopéenne des Éléments Finis, 11:7-8, 825-
867, DOI: 10.3166/reef.11.825-826, 2002.

[3] Dilts, G.A. “Estimation of Integral Operators on Random Data,” Los Alamos Tech-
nical Report, LA-UR-17-23408, Los Alamos National Laboratory, Los Alamos, NM,
2017.

11

